用算法熵来证明“科学是可证伪”观点的错误性

作者:planeheart 相信列位都对波普尔的证伪主义主张有所了解。概括而言,该主张认为: 一个理论是科学的,因为它可以被证伪。 该主张的关键论据之一在于证实和证伪的不对称性。其论证大致如下:科学命题都是全称命题,而全称命题的证实都是极度困难的,而证伪则相对容易。作为一个例子:天下乌鸦一般黑的主张,只需一只白乌鸦的存在就能否定。 基于该主张甚至可以得出一些看似合理的结论,例如:若我们从黑箱中摸球,前面100只摸到的都是红球,那么以下两个假定(均与目前的观察结果吻合): “(1)黑箱中都是红球” ,(2)黑箱中存在各种颜色的球‘ 中, 我们更应该接受(1),因为这样使得理论显得简单且更容易被证伪。(波普尔认为,归纳推理对科学而言是不必要的,原则上可以用证伪主义的原则来选择接受的 理论)容易看出,如果第101只球是绿球,那么(1)即被证伪,但(2)并没有被证伪,所以(1)具有更强的可证伪性。 通过一些粗糙的类比推理,证伪主义理论还能以一种诡异的方式和奥卡姆剃刀取得共鸣,即:简单的理论倾向于极端,也即是容易证伪。因此通常应该选择尽可能简单的理论。 证伪主义理论本身在科学哲学领域也饱受批评,在此不提。因为本文作者认为这些批评没有击中这个理论真正的要害,也没能找到足够好的弥补方式,真正的问题在于: 它试图主张的证实和证伪的不对称性其实在科学中是不存在的。其错因在于其前件”科学命题都是全称命题“并不正确,显然,”二维强关联体系中允许存在不服从玻色和费米统计的准粒子“并不是全称命题,而且刚好相反,这类命题的证伪极度困难,而证实相对容易。这使得证伪主义相对于实证主义的所谓优势丧失殆尽。 甚 至用减弱的版本说”作为科学理论的基本原理必须是全称命题““也不正确,因为实际上允许我们用特称命题的形式来表述其中一些原理,例如,存在完备描述物理 体系的拉格朗日函数。即便依然存在不少似乎只能以全称命题形式出现的原理,也很难看出以后不存在改造表述的可能性。更重要的是,全称命题通常很难证实,但 并非一定不可能证实。 证 伪主义者将证实全称命题的难度上升为”不可能“的理由是认识对象的无限性,但是这种无限性本身就不是能从纯粹的演绎推理中得出的结论。(天下的乌鸦数目确 实不是无限的)这导致他们背离了原有的主张。而关于物理中可以被称作”认识对象“的数目是否为无限,尚存在严重的争议。(如果将贝肯斯坦极限用于可观测宇 宙整体,那么用于描述它的最低信息量,以bit计,是有限的) 因此,实际上证伪主义者的自相矛盾发生在他们试图论证科学命题的特性的过程中,没有成功地从纯粹逻辑的角度支持他们的论点,却主张他们的论点不依赖归纳。 因此本文作者打算从随机性,而非可错性的角度来看整个问题。 所谓算法熵,即一般信息论教材所称“科尔莫格洛夫复杂度” Martin- lof随机性是对无限长的0-1二元序列定义的。对于有限长的0-1序列,因为算法熵的定义依赖于通用机U的选取,因此该定义对有限序列的存在局限性:结 果依赖于对U的选取。然而对无限长的序列,选取任意U均会给出相同的结果(这称作算法熵的普适性),因此,该定义虽然需要提及通用机,但本质上不依赖通用 机。 该随机性的确具有非常有趣的不对称性: (1)我们可以证明绝大多数的序列是随机的。(确切而言,非随机的序列构成零测集)…

Read More